| Basic Science Department <br> Math. 1 Code: Math 101 <br> Final Exam: 29 / 7/2013 <br> Time Allowed: 2 hours | Faculty of Engineering | Academic year: 2012 / 2013 <br> Semester: Summer <br> Examiners: Dr. Mona Samir Dr. Mohamed Eid |  |
| :---: | :---: | :---: | :---: |
| Answer All Questions |  | Total M |  |
| Question 1 |  |  |  |
| Find the first derivative of the following functions: <br> (a) $y=\cos \left(e^{x}\right)+e^{x} \cos x$ <br> (b) $y=\operatorname{sech}^{-1} x^{2}+\log _{3} x^{6}$ <br> (c) $y=8^{x^{2}} \cdot \sqrt[4]{4 x^{4}+5}$ <br> (d) $y=\cot ^{3}\left(\ln x^{7}\right)$ <br> (e) $y=\frac{\sin \left(\sinh x^{3}\right)}{\sqrt{4-5 x}}$ <br> (f) $\tan ^{-1}\left(x^{3}+y^{5}\right)-\cosh 5 x=3 y$ <br> (g) $y=x^{3}+3^{x}+3 x$ <br> (h) $y=\sqrt{1+t^{2}}, \quad x=(1-2 t)^{-2}$ |  |  |  |
| Question 2 |  |  | 4 |
| Determine any maximum, minimum and inflection points of the function:$f(x)=3 x^{2}-x^{3}+1$ |  |  |  |
| Question 3 |  |  |  |
| Find the following integrals: <br> (a) $\int\left(3^{x}+3 x^{2}+1\right) d x$ <br> (d) $\int x \cdot \sin x d x$ | $\begin{aligned} & \int\left(\frac{1}{x}+3 \cos 2 x\right) d x \\ & \int \sin 3 x \cdot \sin 2 x d x \end{aligned}$ | (c) $\int \frac{x+3}{x^{2}-3 x+2} d x$ |  |
| Question 4 |  |  |  |
| (a)Compute the area of the region bounded by the curve $y=\left(x^{2}-2\right)^{2}$, x -axis, x in $[0,1]$. <br> (b) Find the length of the curve $y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ between $x=0, x=1$. <br> (c)If the region bounded by the curve $y=1+x^{3}, x-$ axis, $x$ in $[0,1]$ is rotated about: <br> (i) x -axis <br> (ii) $\mathrm{y}-\mathrm{axis}$. <br> Compute the volume $V_{x}$ and the volume $V_{y}$ of the generated solids. |  |  | 3 |

